Tree Structured Interpretable Regression
نویسنده
چکیده
منابع مشابه
Prediction of melting points of a diverse chemical set using fuzzy regression tree
The classification and regression trees (CART) possess the advantage of being able to handlelarge data sets and yield readily interpretable models. In spite to these advantages, they are alsorecognized as highly unstable classifiers with respect to minor perturbations in the training data.In the other words methods present high variance. Fuzzy logic brings in an improvement in theseaspects due ...
متن کاملVisualizable and Interpretable Regression Models With Good Prediction Power1
Many methods can fit models with higher prediction accuracy, on average, than least squares linear regression. But the models, including linear regression, are typically impossible to interpret or visualize. We describe a tree-structured method that fits a simple but non-trivial model to each partition of the variable space. This ensures that each piece of the fitted regression function can be ...
متن کاملVisualizable and Interpretable Regression Models With Good Prediction Power
Many methods can fit models with higher prediction accuracy, on average, than least squares linear regression. But the models, including linear regression, are typically impossible to interpret or visualize. We describe a tree-structured method that fits a simple but non-trivial model to each partition of the variable space. This ensures that each piece of the fitted regression function can be ...
متن کاملRegression by Parts: Fitting Visually Interpretable Models with GUIDE
A regression model is best interpreted visually. Because we are limited to 2D displays, one way that we can fit a non-trivial model involving several predictor variables and still visually display it, is to partition the data and fit a simple model to each partition. We show how this can be achieved with a recursive partitioning algorithm called GUIDE. Further, we use examples to demonstrate ho...
متن کاملMultivariate random forests
Random forests have emerged as a versatile and highly accurate classification and regression methodology, requiring little tuning and providing interpretable outputs. Here, we briefly outline the genesis of, and motivation for, the random forest paradigm as an outgrowth from earlier tree-structured techniques. We elaborate on aspects of prediction error and attendant tuning parameter issues. Ho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995